
Journal of Statistical Physics, Vol. 81. Nos. 3/4, 1995 

Stationary States of Crystal Growth 
in Three Dimensions 

D.  J. Gate s  t and M. Westcot t  l 

Received November I, 1994; final May 8, 1995 

A new Markov process describing crystal growth in three dimensions is intro- 
duced. States of the process are configurations of the crystal surface, which 
has a terrace-edge-kink structure. The states are continuous along edges but 
discrete across edges, in accordance with the very different rates for the two 
types of captures of particles. Stationary distributions, describing steady crystal 
growth, are found in general. To our knowledge, these are the first examples of 
stationary distributions for layered crystal growth in three dimensions. The 
steady growth rate and other quantities are obtained explicitly for two inter- 
acting edges. For many interacting edges, growth behavior is determined (a) in 
various asymptotic regimes including thermodynamic limits, (b) via simulations, 
and (c) using series (cluster) expansions in the slope of the surface, the first 
three coefficients being computed. The theoretical growth rates show a marked 
dependence on surface dimensions. This may contribute to the size dependence 
and dispersion in the observed growth rate of small crystals. 

KEY WORDS: Crystal growth; Markov process; stationary distribution; 
growth rate; thermodynamic limit; cluster expansion; coincidence probability; 
simulation; solid-on-solid. 

1. I N T R O D U C T I O N  

Crysta l  g rowth  can  be descr ibed by M a r k o v  processes whose states are 
conf igura t ions  of  the crystal  edge (in two d imens ions )  o r  surface (in three 
d imens ions )  and  whose t rans i t ions  are cap tures  and  escapes of  part icles 
theref rom (e.g., refs. 14, 18, a n d  32). O n e  can  give a ma thema t i ca l l y  exact  
analysis  of  s teady states of  g rowth  in two dimens ions  112'13"1~ and  this 
has app l i ca t ion  to po lymer  crystal l izat ion,  17''-j'22'-~5"27"3~ where  the crystals 

are flat or  lamellar. The analysis  in refs. 13, 10, and  16 provides  explicit  
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stationary distributions, steady growth rates, and other quantities for a 
physically relevant class of transition rates. These transitions rates lead to 
a form of detailed balance and to the dynamic reversibility of the process. 
For more general transition rates, such distributions are unknown, but 
existence conditions have been found, t~5) 

Three-dimensional crystal growth has been studied intensively for a 
long time, in hundreds of publications, using computer simulation and 
various approximations (e.g., refs. 8, 18, 19, 32, 26, and 23), and much 
physical insight has been gained. Mathematical understanding of three- 
dimensional crystal growth is much more limited. Some existence condi- 
tions are known, ~4"~5~ but there are no exact solutions for steady growth 
analogous to the two-dimensional ones. There is no discrete event Markov 
model where a stationary distribution, under net growth conditions, is 
known. Hence there is no partition function from which one might try to 
deduce macroscopic behavior. Further, one can prove ~ t4~ that a significant 
class of models has no dynamically reversible members. So stationary 
distributions might be quite complex and difficult to find. These basic 
deficiencies have been a major barrier to a deeper understanding of the 
physics of crystal growth. 

2. THE N E W  M O D E L  

To circumvent these difficulties, we consider a model that is discrete in 
one direction on the crystal surface, but continuous in the other. The 
crystal grows on a rectangular base (or substrate) of length L and integer 
breadth B (Figs. la  and lb). The breadth is divided into terraces or levels 
l =  1, 2 ..... A, where level l + I is unit distance higher than level/. Periodic 
boundary conditions are used, so that level A + 1 is identified with level 1. 

The edge of level l, where it falls to level l -  1, has N / unit steps or 
kinks facing west at (real-valued) locations x/~ ..... xm~ and N/ unit kinks 
facing east at locations y~ ..... Yml, as shown in Fig. 2. We call this edge 
number I. Edges 1, 2 ..... A are shown in Fig. lb and the periodic image of 
edge .4 is shown as a broken line (see also Fig. 10). The configuration or 
state C of the process comprises these variables, subject to 

O<~xll <<, . . .  <~xm~<L 
(2.1) 

O<~ ytl  <~ . . .  <~ y l N l < L  

for each l, together with the NS locations Zl ..... zA of the edges, measured 
southward from the NW corner on the western border of the substrate 
(Fig. lb). These latter are integers subject to 

l ~ z l ~  " '  ~ z A ~ B  (2.2) 
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Fig. 1. The crystal surface, indicating tile A terraces and their edges and kinks. (a) A 
perspective drawing with terraces shaded, (b) projection of (a) on the (B, L) plane. 

Periodic boundary conditions in the L direction imply that a state with 
x~r = L and given z~ is identified with the state having xzr = 0 and corre- 
sponding edge location -~+ 1. Similarly, ()%.=L;zl) is indentified with 
(Yr.,. = 0; zz -- 1 ). 

The state space I2 comprises all such C's where terraces have no over- 
hangs; that is, the "solid-on-solid" (SOS) rule is obeyed. This means that 
edges, as viewed in Fig. lb, do not overlap. 
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Fig. 2. Kink locations on edge number/.  

We define a continuous-time Markov process on this state space as 
follows. Atoms are captured by the surface in two ways) 7) A type 1 capture 
is the attachment of a square card  and is represented by a new sp ike  on an 
edge, as shown in Fig. 3, leading to a new configuration with an added 
x/r = Yls. This is possible only when it does not violate the SOS rule. The 
captures comprise a Poisson process in time and are uniform on the 
allowed intervals of the edge, with rate i spikes per unit EW distance per 
unit time. Type 2 captures occur on the faces of kinks and result in the 
simultaneous EW motion of all kinks with speed g in the sense in which 
they face (Fig. 3). These evidently never violate the SOS rule. Neighboring 
kinks moving together and recombin ing  constitutes a further transition, 
in which an x~, = y~. is deleted from C. West-moving kinks that reach 0 
reappear at L and east-moving kinks that reach L reappear at 0. 

Our process is essentially a multiedge version of the model of ref. 1, 
with extra SOS rule exclusions. The continuous nature of the process in the 
EW direction implies that type 2 captures are very frequent compared to 
type l's. Predominance of type 2's is typical when crystal growth is not too 
fast; type 2 sites are more attractive because there are more neighbor atoms 
to bond to. If the edges are rather smooth, coincident like-kinks will not 
occur, so the edges will have the structure described. This can be made 
precise as shown in refs. 12, 13, and 16. Thus the model is physically 
natural in spite of its asymmetry. The other conceivable captures--atoms 
on a flat surface--are excluded. For real crystals, these nuclea t ions  are 
infrequent compared to the other captures unless growth rate or tem- 
perature is high, (6'32) in which case a different model would be needed. 

For macroscopic theory, A and B will be large. Then the periodicity 
will not be felt, and the model will represent a surface with slope A / B  in 

I z 

Fig. 3. Captures of type 1 (spike) and type 2 (speed g). 
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the NS direction. Alternatively, the edges can be regarded as originating 
from screw dislocationsJ 6"32~ 

Although the state space treats A and B differently, it is clear from 
Fig. la that the process is the same if A and B are interchanged. This fact 
will be exploited to relate results at low and high values of A/B. 

The model can be generalized to include a slope in the EW direction; 
for example, give every edge an excess of K left-facing kinksJ 16~ To avoid 
excessive complexity, we postpone this generalization until Section 15. 

The physical process of melting or evaporation of a crystal surface 
by escape of atoms can be treated by using what is essentially a reversed 
version of the present process. (See ref. 10, Section 5. This reference gives a 
mathematical version of the Wilson-Frenkel theory.) 

3. THE F O R W A R D  E Q U A T I O N  

The probability density at time t of state C having total number 
A 

N =  ~ N, (3.1) 
i=1 

of left kinks is denoted Pu(C, t). To write the forward equation we consider 
three cases. 

Case 1. xh.:~ Yt.,~, xv :~0, L, and Yr., r L for all l, r, s. Then the 
following transitions contribute. A spike could be created on edge l (on 
level l - 1 )  at any point u in a set S t ( C ) c  L where there is space between 
edges l - 1  and l (Fig. 4). Or a recombination of two kinks could have 
occurred anywhere in St+ i. We write Ht(u, C) for the indicator function of 
St (i.e., 1 for u in St and 0 otherwise) and Dr(C) for its total length. Then 
the forward equation is 

0 A 
~ P ~ C ,  t )=  --iPN(C, t) ~ Dr(C) 

I=1 

+2g  duPu+,[{C,(u,u)t},t]H,+,(,,C) 
/ = 1  

+ g ~ t~ PN(C, t) (3.2) 
/ = 1  = 

where { C, (u, ub} means that u is appended to the xTs and to the y~'s. The 
first term describes type 1 captures, producing transitions out of C. The 
second term describes recombinations of kinks which lead into state C. 
The final term describes the deterministic motion of kinks with speed g. 

For the case of one layer (A=  1) (3.2) is essentially the equation 
of Bennett et al/~ They include coincidences of kinks by means of Dirac 
delta functions. We consider these separately. 
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Fig. 4. 
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Example of  a set S~ where spikes can occur on edge / and kinks could have recom- 
bined on edge l - -  1. 

C a s e  2. Xh. = Y/.," = U, say, while x,,,, ~ 0, L and y,,,, -~ 0, L for all m, 
u, v. Then the forward equation is 

a A 
~ PN(C, t) = RHS of(3.2) + i  ~. PN_ ~(C/,...., t) Hi(u,  C) 

/ = l  

A 

--2gPN(C, t) ~. H/+l(u,  C) (3.3) 
/ = l  

where Cir.,. is the result of  removing xt~ and Ya. from C. We have omitted 
the obvious Dirac delta functions. 

O v e r f l o w  C a s e s .  If  a kink crosses 0 or L, there is relabelling of  
the x's or y's and a jump in a z coordinate. Thus, for our  choice of state 
variables, there is a jump transition, though this is not  a physical transition. 
First consider a state C with x/t < Y/] and 0 < x / ]  < g dt at time t. For  
small enough dr, this will hold for at most  one I. It follows that (within 
order dt) zt>~zt_~ + 1 and there will be no creations or recombinations or  
overflows at L during (t, t + d t )  [since such simultaneous events have 
probability of  order (dr)2]. Then the kink at x/~ will reach x l ~ - g  dt + L at 
time t + d t .  First exclude the case where both I =  1 and z~ = 1. Then the 
state C' at t + dt is given by 

! . xml = xll  -- g dt + L 

. t  x l r =x l ,  r + l - - g d t  for r = l  ..... N / - -1  

x',,,r= x , , r -  g dt for m r l, al l r  
(3.4) 

j r  _ _  ) ... - Y,.r + g dt for all m, r 

-~ 1 "~1 ~ Y / - -  

~' = z,. for all 171 :%: / - -  n 1 

If, however, I =  1 a n d  z j  = 1, then the new z's are 

z ; = z t + ,  for l = l  ..... d - 1  

z'., = B  (3.5) 
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Then 

PN(C', t + tit) = PM C, t) + o(1) (3.6) 

A similar equation holds if xm~ < Ym~ and L - g tit < Ym~ < L at time t. 
Since simultaneous type 1 captures are zero measure events, we need 

not consider them; likewise for simultaneous recombinations and simul- 
taneous overflows of kinks at the ends of [0, L). Thus (3.2), (3.3), and (3.6) 
suffice to describe the time development of Pu for initial states of physical 
interest. 

4, THE STATIONARY DISTRIBUTION AND D Y N A M I C  
REVERSIBILITY 

We show that the stationary distribution is 

H,v(C) = ( i /2g)g/z ,  C e/2 (4,1) 

where Z is the normalizing constant or partition function. Thus Hu(C) is 
uniform on each subset o f / 2  having fixed N. To prove that //N(C) is 
normalizable, we write 

Z = ~,, q2NV N (4.2) 
N 

where q = (i/2g) ~/2, N = (N~ ..... NA) and V N is the volume of the subset s N 
of the state space ~ with kinks N, and involves integrals with respect to the 
x~,.'s and yh.'s and sums over the z;s. Relaxing the SOS rule gives the bound 

- -  ( L N t ~  2 
VN<~( B + A  1) l~I \ ~ f l  j (4.3, 

I = l  

where the combinatorial factor V o is the number of distinct combinations 
of z;s. Thus the sum (4.2) converges and has the bound 

Z ~ VoIg(2~IL) (4.4) 

where Io(-) is the modified Bessel function. 
To establish (4.1), we note that it reduces the right side of (3.2) to 

-- iHN E D, + 2gH,v + ~ ~'. D,+ , (4.5) 
I I 

Since the D;s are periodic (DA§ =D~), (4.5) is zero. The right side of(3.3) 
reduces to 

i17N_ l ~ H , -  2gH g E H,+ ~ (4.6) 
I I 
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A type 1 transition and the reverse transition through the conjugate states. 

Since the H f s  are also periodic, (4.6) is zero, too. Further,  (3.6) is satisfied 
by HN because of the above uniformity of  HN. Thus (4.1) is established, 
though certain questions of  mathemat ica l  rigor (definition, existence, and 
uniqueness) have not been considered. 

We note that  (4.1) reduces to the Bennett et al. result ~11 when A = 1. 
Their  derivation is much more  complex, though basically equivalent for 
A = 1. They give a heuristic a rgument  as well. 

One can get some mathemat ical  insight into the process and the 
simplicity of  its s ta t ionary distribution as follows. For  any C define the 
conjugate state C* as the result of  reflecting the picture in Fig. lb  so that  
north and south are interchanged. Equivalently, interchange the x/r's and 
yz,?s for each l, and reverse the order  of  the edges thus 

z / * = B + l - - z A + l _ l  

xz* = YA + I -I,,. 

Yh*. = X A  + I - I , , .  

Evidently (C* ) *=C  and we note that $1(C)=S.,+2_1(C*). It is clear 
from (4.1) that (omitting N from the notation) 

/7(C*) =/7(C) (4.7) 

Now we write C~ for the state {C, (u, ub+~} and q(C, C'} for the 
(possibly zero) transition rate from state C to any state C'. Thus 

q(C, C l ) =  iHl+l(u ,  C) (4.8) 

which describes the creation of a spike at u on edge l +  1 (Fig. 5). The 
transition C*---, C* is a recombinat ion of kinks (Fig. 5) and has rate 

q(C*,  C*) = 2gH~ + l _/(u, C*) = 2gi l l+ l(u, C) (4.9) 

Since H ( C ) i = H ( C I ) 2 g ,  we conclude that  

/-/(C) q(C, C, )=/7(C*)  q(C*, C*) (4.10) 
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Writing A I = C* and A = C*, (4.10) becomes 

H(A, )  q(Al,  A) = H(A*)  q(A*, A*) (4.11 ) 

where A~ ~ A is a recombinat ion transition. Equations (4.10) and (4.11) 
show that  a form of detailed balance holds for all transitions. The total rate 
of all transitions out of  C is 

q(C)=i~ D, (4.12) 
l 

if no X/r coincides with a YL~,. If  x h. = Y/.,- = u, then 

It follows easily that 

q(C) = i~. D ,+  2g ~. H:+ ,(u. C) (4.13) 
I I 

q(C*) = q ( C )  (4.14) 

for all C. Equations (4.7), (4.10), (4.1 1), and (4.14) are the basic balance 
equations that  characterize a dynamically reversible process]  33"34) i.e., the 
stat ionary process C*(t)  is identical to the s tat ionary process C ( r - t )  for 
any r. This is not established rigorously, because we have not set up the 
appropr ia te  probabilistic formalism, but it is fairly evidently true (it was 
this observat ion that led us to the model  in the first place). 

Most  mult idimensional  Markov  processes, with known stat ionary 
distributions, satisfy some form of reversibility and associated balance 
conditions. Conversely, many  studies have been limited by the absence 
of such a proper ty  and the consequent absence of a known stat ionary dis- 
tribution. We have shown that  a significant class of  fully discrete, crystal 
growth models, in three dimensions, do not have such a proper ty  ~ J4~; there 
is a function H(C)  which satisfies equations of  the form (4.10), but 
(4.14) does not hold for all C (as in ref. 8, for example). Thus there is a 
fundamental  obstacle to progress with such models. 

5. STATISTICAL QUANTITIES AND GROWTH REGIMES FOR 

is 

SMALL AND LARGE CRYSTALS 

The growth rate, or captured area in unit time, per unit substrate area 

G = 7 ~  N, - (5.1) 
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where ( . )  denotes expectation with respect t o / 7  over all N and 

~b = 1 log Z (5.2) 

By analogy with equilibrium statistical mechanics, we refer to - ~  as the 
free energy. The growth speed in the direction normal to the crystal surface 
is (1 + AZ/B ~-)- ]/2 G. The creation rate per unit substrate area is iR, where 

which is an indicator of the degree of interaction between edges. Correla- 
tions among the N t and the D~ are also of interest. 

Let a denote the proportion of the A adjacent edge pairs that touch. 
Then 1 - ( a )  is the probability that edges 1 and 2 (say) do not touch. The 
resulting gap of one site in the NS direction implies that 

The quantity 

1 - < a >  =Z(A, B -  I)/Z(A, B) (5.4) 

,g(A, B) = - l o g [  1 -- ( a )  ] (5.5) 

which we call the pressure, is a measure of the "horizontal" crowding of 
edges. Evidently/~(A, 1 ) = oo. 

Let P(a] ..... a,,,b~ ..... b,,ln) denote the probability that z ] = z 2  and 
Ix],.-x,_,l < a t  and [Y]r-Y2r[ < b r  for every r, conditional on there being 
17 x-kinks on each of edges 1 and 2. Then, as every a,., br ~ O, 

< / > P(a] ..... b,, Ili) ]-I arb~ 
I t =  1 

Z(A  - 1, B) /Z(A,  B) = ((A,  B), say (5.6) 

which we call the activity. It gives the concentration of probability density 
at the coincidence of two edges, and is a measure of the "vertical" crowding 
of edges. 

Obviously,/~ and ( are mathematical analogs of their namesakes in the 
equilibrium statistical mechanics of fluids, though their physical interpreta- 
tions are different. 

Since A and B are interchangeable, J V ( A , B ) = . A r ( B , A ) ,  where 
./1/" = ( Z I N / > ,  and so 

G(A, B) = (A/B)  G(B, A)  (5.7) 
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The probability that there are no kinks on any edge is Vo/Z. Equating this 
to its value when A and B are interchanged gives 

AZ(A, B) = BZ(B, A ) (5.8) 

which implies that 

~(A, B) = (B/A) q~(B, A) + (l /B) log(B/A) (5.9) 

and 

p(A, B) = - l o g  ((B, A) + log[B/(B-  1 )] (5.10) 

These have special relevance in the thermodynamic limit [see (10.31)]. 
An easy calculation [-see (4.4)] gives Z(1, B ) =  BIo(2~tL) and 

(2ig) 1/2 It(2r/L) 1 
G(1, B) = BIo(2qL) - B G ( B ,  1) (5.11) 

References 1, 13, and 20 give G( I, 1 ). In Section 6 we analyze a two-edge 
model. For many edge models, we obtain cluster expansions (Section 13), 
perform simulations (Section 14), and consider various asymptotic regimes: 

Regime I: few kinks (small qL), Section 7 

Regime II: many kinks (large ILL), Section 8 

Vicinal surfaces: small and large A/B, Section 9 

Thermodynamic limit, grand ensemble: A, B---, Go, A/B---, p, Sec- 
tions 10-12. 

The continuous EW state variables imply that, for any finite L, the 
EW length is very large on an atomic or molecular scale, and L is a 
rescaled length. For a single edge, a discrete model with M E W  sites 
(atoms) can be analyzed ~ J3,16) and our continuous model obtained with the 
identification 

Me --. Li, v / M ~  g/L (5.12) 

as e ~ 0 and M, v ~ or, where 0~ and v are rates of the discrete model. 
Thus, the further limit L ~ c~ in regime II has an essentially different inter- 
pretation from B--* ~ .  

For fixed Jl, regimes I and II (names borrowed from polymer crys- 
tallization (v~6~) correspond, on the whole, to small and large crystals. 
Small crystals are important in many industrial processes involving separa- 
tion and purification from solutionsJ 9) The rates of such processes are 
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dominated by the growth rates of small crystals. The growth rates often 
show a marked size dependence (e.g., Fig. 9 in ref. 9) as well as a variation 
among crystals of the same size--so-called growth rate dispersion. The 
distinctly different growth rates through regimes I to II [see Fig. 6a 
and Eq. (8.3)] may contribute to this phenomenon. Other explanations 
involving dislocations and surface-to-volume ratio (ref. 9, Section 4.3) have 
been offered, but the question is not fully resolved. Because of these con- 
siderations, we shall seek results applicable for all L. 

6. THE TWO-EDGE MODEL 

For the case A = 2, the partition function can be evaluated explicitly 
as follows. Setting d=z,_--Zl and using the NS periodicity, we have 

1 B ~ ~ (IIL)21NI+N2) 
z ( 2 ,  8) = -~ 8 ,~ =o ,v,=o N:=o [ 2 ( N I + N 2 ) ] !  #(2NI,2N2,d;B) (6.1) 

where # ( . )  is the number of arrangements of 2N~ kinks on edge l (N~ of 
each type, l = 1, 2) which ensure they never cross if they start d apart. Now 
assign the value + 1 to the N~ x-kinks on edge 1 and to the N2 y-kinks on 
edge 2, all other kinks getting the value - 1. Let the + l's and - l's be the 
steps in a one-dimensional walk which begins at d [and ends at d after 
2(NI + N_,) steps]. Then, clearly, the walk stays within [0, B] if and only 
if the original edges never cross. Evidently, the counting of walks requires 
only knowledge of the sequence of + l's, not where they originally came 
from. So any of the rN,+N,_~ arrangements of the x-kinks and v-kinks " NI ! 

among the + I steps gives the same walk. The same applies to the - I  
steps. Thus any such walk derives from (N~/V2)2 possible edge arrange- 
ments, and so 

(Nt + N,~ 2 v(Nt + N, d; B) # ( 2 N 1 , 2 N _ , , d ; B ) = \  Ni -J - '  (6.2) 

where v(s, d; B) is the number of walks with steps + 1 between (0, d) and 
(2s, d) that stay inside [0, B]. Thus 

. .  (;.)2 
~ L 

= s = 0  j = 0  ~ 

2 z "  o (s!) 2 
d = 0  = 

v(s, d; B) 

(6.3) 
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A standard result is (ref. 4, Chapter 3, Q.3) 

v(s,d;B)= ~. {( 2s ) _ (  2s )} (6.4, 
k . . . .  s + k ( B + 2 )  s + k ( B + 2 ) + d + l  

where, in fact, the sum is finite. Now consider 

9 ~ ----~0 ~ ~ -'I-" S'~ ) : 7q2(i + J )  + 2n I?,(2x) = i!j!~TF-d~ ( j+n)!  
i = O  j 

~- x 2~'+2" (s'~ (s + 2n'~ 
= ,.~o s,~ ~--2n), L �9 k=o \ k J \ k + n  J 

X 2 s + 2 n  /2s +2n \  
= Z s!~+2n)! ( } \  s + n  / 

[ref. 28, p. 617, 4.2.5, 24] 
S = 0 

=t=,, ~ t+n  

Leaving the k sum from (6.4) till last, we have 

Z(2, B ) = 2 k  ~ _  (B+ 1) ~ (s 1~2 s+ Ik] (B+2) 
= - -  .. s = l k l ( B + 2 )  ~ "* 

d=0.,.=lk(B+21+a+ll (S!) 2 s + l k ( B + 2 ) + d + l l  

1 
B(B+ 1) L = -  I ~kl (s + 2)( 211L ) 

2 k=-.~_ 

- -~B L L I~k(S+2�91 (2qL) (6.6) 
d = 0  k = - - ~  

The second term is just 

~.B " ~ I[kl(s+ 21(2rIL) I?kl(2q L) - 
k ,zo = - - o o  

Using Neumann's identity 

.7=- 

I ~ka( 2qL ) = Io( 411L ) 
k =  - -o ' .  

(6.7) 

(6.8) 

822/81/3-4-12 
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we have 

Gates and Westcott  

Z(2, B ) =  �89 ~ I~a.I,,+,_,(2~IL)-�89 (6.9) 

This can be written as a finite sum using the identity [ ref. 28, p. 697, special 
case of 7 (which contains some misprints)] 

l~,,,(z) = 1 ~k O~klo{2ZCOS(kn/v) } (6.10) 
k =  ~oo  " V k ~  _ 

where k+ = +_ [v/2] and [ - ]  denotes integer part, and 

a k = l  for k#k+_ 

{11/2 for v even 
~k+ = for v odd 

whence 

O(2,2)=x/~(2ig)'/2 I t (2x/~,IL)/[l  + 2Io(2x/~,lL)] (6.14) 

which is plotted in Fig. 6a. Thus G(2, 2) ~ (1/x/~)(2ig) ~/z as qL ~ oo, which 
is less than the independent-edges result (2ig) t/'-, a consequence of the 
interaction between edges. 

Then (6.9) reduces to 

Z(2, B) = -~ B ~' O~kIo 4qL cos (6.11 ) 
k 

where the sum extends from - [(B + 2)/2] to [(B + 2)/2] excluding k = 0. 
More explicitly, for integer fl ~> 1, 

Z ( 2 , 2 f l ) = f l + 2 p  ~ I o 4r/Lcos 
k = !  

(6.12) 

z(z, 2p-1)=(2p-1) Z 10 @Lcos 
k = l  

For example Z(2, 1)= Io(2qL), which is a special case of (5.8) with (5.11 ). 
Further, 

Z(2, 2 ) =  1 + 21o(2 v/2 qL) (6.13) 
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Fig. 6. Some results for the two-edge model. (a) Normalized growth rate versus t/L, 
(b)  pressure  versus  r/L. 

For large B, (6.9) gives 5,,~ p and 

G~pG(1, 1) (6.15) 

where p = 2/B is. the edge density. These show, as expected, that the edges 
become noninteracting at low density. They are related to Theorem 2 of 
Section 9 and the cluster expansions (13.4) and (13.5). 

For small qL, implying low kink density, (6A2) gives 

G(2, B) ~ 2Li/(B + 1 ) (6.16) 
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_ l  I ; - - - J  I I I I . 
1 I 

Fig. 7. An example with B = 1. 

which is a special case of Theorem 1 in Section 7. Similarly 

B + I  
/7(2, B) ~ log B--  1 (6.17) 

For large r/L, (6.12) gives 

],~ 2 rc 
G ~  ( 2 i g ) / - 7  cos B +---2 (6.18) 

For B = 1 (Fig, 7) this coincides with the general result (8.2), which implies 
G(A, 1)~(2ig) '/2 as r / L ~  ~ .  For large B, it coincides with the cluster 
expansion (13.5) to first order in p. Similarly, for B >  1, 

/7(2, B) ~4t /L c o s ~ - - ~ - c o s  (6.19) 

showing that the pressure is ultimately linear in ~/L. 
Figures 6a and 6b show G and/7 plotted against ~?L for various p, 

using (6.12). These illustrate the relations (6.15)-(6.19). Figure 6a implies 
a dependence of growth rate on crystal size, and is in qualitative agreement 
with data such as Fig. 9 of ref. 9. 

We note from (5.7) that G(A, 2)=(A/2)G(2, A), which can be 
evaluated using (6.12). 

7. R E G I M E  h S M A L L  qL 
Now we consider the many-edge model, beginning with small crystals. 

If r/L ~ 1, then iL ~ 2g/L, so the time between creations on an edge is much 
greater than the time for a creation to grow and cover the edge. Then most 
edges are straight most of the time and form a set of straight steps. Each 
step may have height /> 1 and their total height is A. The expected number 
of steps in such (equally probable) configurations is BA/(A + B - 1  ). Since 
a creation covers an edge almost instantly, it contributes area iL per unit 
length per unit time. Thus one expects 

G~LAi / (A+B-1)=-Go,  say (7.1) 

in this regime. More precisely, we have the following result. 
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T h e o r e m  1. 

G/G o --* 1 as IlL --* 0 

for fixed A and B. 

Proof. 

and 

From (5.1), G = 2gS/(LBZ), where 

s= F. NZ(t?N) 
N = I  

2.:Nf dlxINf alyINZ(AI 
z l"4 
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(7.2) 

(7.3) 

(7.4) 

where I(A) is the indicator of any set A c ( 2  and the sums and integrals 
extend over f2. We bound S above and below as follows. First 

S ) ] A ( ( 2 , )  = B ] . t ( g ' 2 1 , 1  ) (7.5) 

where 121. ~ c 12~ is the state subspace where the edge carrying the kink pair 
has end point z = 1. In 12, ~ the remaining A - 1  edges are straight and 
have (B~A]-'-) distinct combinations of possible locations. If there is no 
other edge at 1, the kink pair can be in either order, and so the x and y 
integrations contribute L 2 to/~(I-2~.]). If there is more than one edge at 1, 
then either the lowest edge can have kinks at x < y (contributing �89 or 

1 o the highest edge can have kinks at x >  y (again contributing ~_L-), with 
total contribution L-" again. Thus 

lt(f21)= B (B + A -  2) - 1  (7.6) 

Using (4.4), we deduce that 

G/Go>~IoA(2rIL)--* l as rIL--*O (7.7) 

Next, It(A)<~lt*(A ) for any A c O ,  where the SOS rule is relaxed in r 
Thus 

S~<r ~ N/z*(I2N) (7.8) 
N = 2  

Since #* involves independent edges, we have 

VI (~/L)'-~v' (7.9) 
/-t*(f2N) = VON~ 1tl (N/!)--------~- ~ 
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which yields 

where 

N~*(.(2jv) = VoAO/L)2j (7.10) 
N = 2  

j =  OIL) -1 I,(2r/L) Ig -'(2~/L) -- 1 

Since Z/> V o we have 

whence 

G ~ G O + 2gq2LAJ/B 

(7.11) 

(7.12) 

G/Go <~ 1 + J( B + A - 1)/B (7.13) 

But II(2qL)/qL---, 1 as pTL ~ 0, so that J ~  0. Theorem 1 then follows. 
When there is an EW slope on the surface, the result is very different 

(Section 15). 

8. R E G I M E  I1: L A R G E  i/L 

In different contexts, de Gennes I]v) and Villain and Bak (3') consider 
partition functions very similar to ours, and coinciding with ours in the 
limit L ~ ~ .  Their method involves expressing the partition function in 
terms of a transfer matrix which is the exponential of a free fermion 
Hamiltonian. The result [see (2.22) of ref. 31 ) in our notation is 

I~ Z(A' B) ~ 2'I ( 1 -~ - )  sin P~+ p)  (8.1) 

as L ~ ~ ,  then A, B ~ co, A/B ~ p. The corresponding limiting growth 
rate is 

G~(p)=(2ig)l /2(~--~)sin(P~+p) (8.2) 

which satisfies the symmetry relation (10.31). In Fig. 8, G~(p) is plotted, 
together .with simulations for r/L = 5. The disparity for large p is due to 
the differing values of JTL: here kinks (creations) are discouraged by the 
crowding of edges, so the effect of finite r/L is more pronounced, and (8.2) 
is less relevant. The series expansion of G~(p) has no p2 term; this has 
been given a physical explanation [e.g., ref. 2, Eq. (7.39)], but it is not true 
for finite L (Section 13). 
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0.0 0.5 1.0 1.5 
arctan p 

Fig. 8. Normalized growth rate versus angle of the surface in the model with i = L =  1, 
g=0.02 ,  and A = 10. The points are simulations, the solid lines are the cluster expansions 
(13.12) and (13.16), and the broken line is the regime II result (8.2). 

Together with (7.1) we now have, for small p, 

G~{p(2ig)U'-(r/L) if r / L ~ l  
p(2ig) '/'- if r/L>> I 

(8.3) 

which emphasizes the size dependence of growth rate (cf. ref. 9, Fig. 9). The 
surface of a small crystal may contain a population of edges with different 
lengths. Growth rate dispersion would then occur if this population varied 
among crystals. 

Equation (6.18) can be derived also via the free fermion method t3~ 
and for further results see ref. 23. 

For polymer (two-dimensional) crystals, the explanation (8.3) for the 
observed size dependence of growth rate is well established, c7~ 

9. EXTREMES OF EDGE DENSITY: V ICINAL SURFACES 

If the density A/B of edges (surface slope) is low, one would expect the 
interaction between edges to be small. For regimes I and II this is estab- 
lished by (8.3). More generally we expect that Z(A, B) ~ Z*(A, B), where 

Z*(A, B)= VoI6'(2r/L) (9.1) 

which ignores the SOS rule. However, for general L, we can prove such a 
result only for B of larger order than A 2. 
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T h e o r e m  2. As A2/B~ 0 for fixed t/, L, 

Z(A, B)/Z*(A, B) - ,  1 (9.2) 

Proof. First (4.4) states that  Z ~< Z*. For  the reverse inequality, we 
change from state variables z to d, where dl=zl+l-zt>~O for 
I = 1 ..... A - 1, so that  d, + . . .  + dA_ 1 ~< B. Then we can write 

Z= 'I 2N d{X}N d lY)N H Jr.l+, (9.3) 
/ = 1  

where Jt.t+~= 1 if edges l and l +  1 obey their mutual  SOS rule, and 
J/.t+ l = 0 otherwise. Putt ing Kc/+ , = 1 --Ji.t+, we have 

H&t+,=I--[(1-Kt.I+,)>~I-~.Kt.,+,=I-~.,(1-Jt.I+,) (9.4) 
/ / I I 

so that 

where T~> 0 and 

Z/>  Z *  - T (95)  

T=B~ ~,12Nf d{x}mf d{Y}N(1--J, 2) 
fl N 

= -- (Ilk(B+ 2)1 2 
k = --cr 

=Big-'- Y" B + A - d - 2  
a=0 A - 2  

x [  ~ I~k,s+2,+a+ll--2 ~" I~k,s+2~l I (9.6) 
k = - - m  k = l  

The combinator ial  factor is the number  of combinat ions  of  end locations 
of the remaining A - -2  edges among  the B - d +  1 sites not excluded by 
edges 1 and 2 at separat ion d. All the Bessel functions have argument  2 The 
square bracket  in the last expression is 

Ia+, +I~-a+, + ~ (I~,s+Z)+d+,--I~,,s+2,) 
k = l  

+ ~ (I~s+2)+S--d+I--I~Is+Z,) 
k = l  

<~Ia+, +I~_d+, 0 . 7 )  
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using the monotonicity of I ,  in the index n. Then 

T <~ 2BI'~ -. 
+ 1  

d = 0  

L ~- -~- - i  2io-~-" ~- 

<<. Z*o( I ) (9.8) 

as A2/B---,O. Thus from (9.5), Z > ~ Z * . { 1 - o ( 1 ) } ,  which proves the 
theorem. Note that the undesirable extra factor of A in T arises from (9.4); 
subsequent bounds preserve the order of magnitude of T. Thus an improved 
theorem would require an improved and manageable version of (9.4). 

Using (5.8), we have the following corresponding high-density result. 

Corollary 2.1. As B2/A --+ 0 for fixed J1, L, 

Z(A, B)/Zt(A,  B) - ,  1 (9.9) 

where 

Z*(A, B ) =  VoIg(2rlL) (9.10) 

The approximation Z-~ Z* leads to G(A, B)-~ G(1, 1), which is con- 
sistent with (13.15). 

10. THERMODYNAMIC LIMIT 

Here we prove the existence of a thermodynamic limit of the negative 
free energy [see (5.2)] 

~(p) = lim ~b(A, B) (I0.1) 

as A, B ~ co, A/B --. p, where p is the mean density of edges or the slope 
of the surface. This enables us, ultimately, to expand # and G as power 
series in p (Section 13) and so demonstrate their slope dependence. First 
we write cot for an edge extending from (0, z/) to (L, zt) on the surface, and 
put 

A= {ta:l ~<zl~< . . -  ~ Z A ~  B, coI ~C02~ .." ~(.OA} 

Q= {o:coA ~<co~ +B} 
(10.2) 
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where the inequalities 
Then the partition function is 

Z =/z(A c~ Q) 

with/z defined by (7.4). We also define 

Z ~ =~t(A) and Z R =/~(A c~ R) 

where 

Gates and Westcott 

on the ogfs indicate the noncrossing (SOS) rule. 

(10.3) 

(10.4) 

R = {m:0 <~oa], co n ~<B} (10.5) 

1 and A are unconfined in Z ~ and are confined between 
0 and B in Z n. Since 0~<o9] and (-,OA<~B together imply 

Thus edges 
barriers at 
rOA--Oal ~<B, it follows that R c  Q, whence 

Zn <~ Z <~ Z ~ (10.6) 

We denote the corresponding negative free energies by q~n and ~b ~ 
First we prove a thermodynamic limit for q~n by standard methods (cf. 

ref. 29, Chapter 3). We compare a 2B x L surface having 2A edges with two 
adjoining B • L surfaces having A edges each. The set 

T = { ~ : I  ~<z]~< ... ~<z2A ~<2B, 0<~o91 <~-.. <~CO2A<~2B} (10.7) 

contains the set 

U ={o) : I  ~<zl ~< ... <~z~<~B,O<<.o91<<.... <~(,oA<~B, 

B+I<-<.ZA+I~< . . .  <~ZzA<~2B, B~OA+I<~ .. .  <.o.)2A<~2B} (10.8) 

Then p(T) >>.t.t(U) and so 

Zn(2A, 2B)/> [Zn(A, B)] 2 (10.9) 

which implies ~b~.+ 1/> ~b~, where 

~R = B k l  log Zn(Ak, Bk) (10.10) 

and Ak = 2kAo and Bk = 2kBo for fixed Ao and Bo. But, by (4.4), ~b k has the 
bound 

ck~ <~ log(Bo/Ao + 1 ) + log Io + 1 ( 10.11 ) 

Thus ~b~ has a finite limit as k ~ c~. For other sequences having the same 
limit see ref. 29, Chapter 3. 

Next we relate the limiting ~b n to the limiting ~b. 
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L e m m a  1. For  integer A > B(log B)-~/2, 

Z~ B) <~ ZR(A, B + 2 A )  + o(1) (10.12) 

as A, B --, co and A/B ~ p. 

Proof. We write Z ~ = p ( I V )  + p ( H ) ,  where 

W = { ( ~ : I  ~<zl<~ .--<~ZA~B,--A~(.OI~ . - .  <~coA<<,B+A} 

H =  {(o:1 <~z I <~ ... <~ZA <~B, o91 <~ ... ~cOA, tolcrosses 

--A or  B + A for at least one l} (10.13) 

Now 

W c  {ca): --A <~Zl < ~ ... <~ZA <~B+ At , - - ,~  ~ ( . 0 1 ~  . . .  <~ coa <~B+ A } 

(10.14) 

whence 

p(14,') <~ ZR( A, B + 2A) (10.15) 

For  H, we first relax the SOS rule and put  

J / =  { r : 1 ~< z l ~< " -  ~< zA ~< B, co/crosses -- A or B + A } 
(10.16) 

K z =  {re:co/crosses - A  or B + A }  

Then we have 

p(H) <~ ~, l~*(Jt) = Ap*(J~ ) (10.17) 
I 

because the right side mult iply counts paths that  leave [ - A ,  B + A ]. Thus 

I~(H) <. A Volg - l f l * ( K a )  (10.18) 

and 

p*(Ka)<~ ~, (qL)2U (10.19) 
N=,a (N[)2 

because any co ~ K~ must  contain at  least A x-kinks and A y-kinks. Now 

p*(Kz) <~ e2qL/g] (10.20) 

which gives a bound  of  the form 

kt(H) <~ cS/A! (10.21) 



704 Gates and Westcott 

for constant e and for large enough B, with A/B--* p. Then # ( H ) ~  0 as 
B---, oz for A as specified, which proves Lemma 1. 

Combined with (10.6), Lemma 1 gives 

1 log ZR(A, B)<~ l log Z(A, B)<~ 1 log ZR(A, B+ 2A)+o(1) (10.22) 

If d~B(logB) -m, then (B+2)/B--*I and A/(B+2A)op.  Thus q~(p) 
exists and equals ~bR(p). Using (10.6) again implies that ~b~ exists and 

~b~ = ~b(p) = C~(p)  (10.23) 

Concavity of ~b(p) follows by the usual arguments (ref. 29, Chapter 3). 
To prove that/~(A, B) and ((A, B) have unique thermodynamic limits 

requires a "continuity of pressure" argument (cf. ref. 29, p. 58, and ref. I 1 ), 
which is lacking here. Assuming, as seems likely, that such limits exist, one 
can relate them to ~b as follows. Put F(A, B) = log Z(A, B), 

f(v) = lim F(A, B)/A = vck( 1/v) (10.24) 

and 

/3(v) = lim/~(A, B) (10.25) 

under the limit A ~ co, B/A --, v. Suppose that/~(. ) is continuous and the 
convergence in (10.25) is uniform for v~ [a, b] in the sense that 

sup [F(A,j+I)--F(A,j)--p(j /A)I~O as A ~ o o  (10.26) 
aA ~ j ~ b A  

Writing [Av] for the integer part of Av, we have 

f ( v ) - f ( a ) =  lim 1 {F(A, [Av])-F(A,  [Aa])} 

1 [A~-  l 

1 tA~-i [F(A,j+ 

Io = p(u)du (10.27) 
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for v~ [a,  b] by (10.26). Hence f ' ( v )  exists in [a,  b]  and 

/~(v) = f ' ( v )  (10.28) 

(This argument  is essentially an example of  convergence of a sequence 
implying Cesaro convergence). Similarly, if the limit 

( (p)  = lim ((A, B) (10.29) 
A / B  ~ p 

exists and the convergence is uniform, then 

log ( (p)  -- - ~b'(p) (10.30) 

The results (10.28) and (10.30) are relevant to the equivalence of ensembles 
(Section 12). We put /~(p)  = p(1/p).  

The A ~ B symmetry  links quantities at small and large p. Thus 
(5.7)-(5.10) imply 

G(p ) = pG(1/p ) 

(~(p)=~(1/p)/p (10.31) 

p(p) = - l o g  ((l/p) 

11. C O N C I D E N C E  P R O B A B I L I T I E S  A N D  F O R M U L A S  FOR Z ~ 

Since ~b(p)= ~O(p), analysis of the model may be based upon Z ~ 

k e m m a  2. We have 

Z ~ = ~ det A(z) (11.1 ) 
z 

where the z sum extends over (2.2) and A(z) is a A • A matrix with com- 
ponents  

A/,,,(z) = II--,-:,,,[ + I/--,i(2q L) (11.2) 

To  show this, consider a symmetric  randomized r andom walk, such as 
that described in ref. 5, Chapter  2, Section 7(b), in which a simple sym- 
metric r andom walk has steps at the points of  a Poisson process of  rate 2r/ 
running for time L. This is clearly a Markov  process. If  we have A inde- 
pendent such processes, starting at z,,..., z A, it is not hard to see that  the 
joint probabil i ty  distribution of their paths and the event that  they are 
again at z~ ..... ZA, respectively, after L is the same, apar t  from a factor of 
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exp(-2r /LA),  as the joint probability of A independent edges in our model 
without the SOS constraint. 

Now apply to the above random walk a result of Karlin and 
McGregor, cz4) which gives the probability that a number of independent 
Markov processes reach a given set of positions without their paths coin- 
ciding. The SOS constraint in Z ~ is equivalent to no path coincidences if 
we start all paths one NS step further away from each other. Because of the 
equivalence of the probability distributions up to a factor, the Karl in-  
McGregor result gives the summands in Z ~ once the factor is removed. 
Lemma 2 now follows from the fact (5) that the transition probabilities of 
the Markov process are 

p_,z,( L ) = e -  2qZll~ _ z,l(2r/L) (11.3) 

We remark that, although Z ~ is not the normalizing constant of any growth 
process of which we are aware, its calculation is related to a process, but one 
with a quite different interpretation. 

For the cluster expansion, to be developed in Section 13, we need Z ~ 
up to A = 3. First we have 

B z2 

t I  z 12_ Z~ B) = Y'. Y'. , o-- z,-_-,+,) 
z 2 = l  Z I = ]  

= �89 1) I o - ( B +  1) S o + S  t 11.4) 

where 
B 

S,, ~ .,, 2 = j I j  
j = l  

Next we have 

Z~ B) = �89 + 1 )(B + 2) 1 3 -  (R~ + R,_ + Rs)Io  + 2R4 

where 

11.5) 

11.6) 

m 2 RI - - ~  I:2-zt+n 
z 

R - 2 
2 - -  E I z s - - z2 +  1 

z 

R3 = Z  I~3_~,+, 
z 

R4 = )-'. I:2- :~ + *Iz3-z,-+ l l z 3 - z l  + l 
z 

(11.7) 
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and all the Bessel functions have a rgument  2qL and the sums are over  
1 ~< z~ ~< z2 ~< z3 ~< B. Rearranging the summat ions  and changing summat ion  
variables gives 

B z3 

R,= Z Z ( z , - j + l ) I }  
: 3 = 1  j = l  

= � 8 9  1)(B + 2)So-�89 + 3)S, +�89 (11.8) 

Reversing the order of  the z/'s shows that  R 2 = R~. In a similar fashion we 
have 

and 

where 

R3= - (B  + 2)So + (B + 3)St - -  S 2 (11.9) 

R 4 = BZ" t - 2~" 2 ( 1 1.10) 

B B - - k + 1  

Z,= E E IjIklj+k 
k = l  j = l  

B B - - k + l  

Z2 = E E jljlkIs+k 
k = l  j = l  

Combining the above gives 

(11.11) 

Z~ B ) =  �89 Io - -B(B+2)  IoSo+BS , + 2BZ't -4Z '2  

(11.12) 

12. THE G R A N D  E N S E M B L E  

The grand partition function 

3( ( ,B)=l+  ~, ('~Z(A,B) (12.1) 
A = I  

is the normalizing constant  of  the invariant distribution of a reducible 
process comprising an ensemble of  the original M a r k o v  processes with dif- 
ferent A, having weights (" .  For  ( <  1/Io(D1L), the convergence of the series 
for S follows from (4.4), giving the bound 

S(( ,  B) ~< { 1 -- (Io(2r/L)} - 8  (12.2) 
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Theorem 3. 

exists and 

For ~ < 1/Io(2~L ), the limit 

1 1 p(()  = limo~ ~ og 3((, B) 

Gates and Westcott  

(12.3) 

G(p) = lim G(A, B) (12.9) 
A / B  ~ p 

is the growth rate in the thermodynamic limit. 

where 

?(()  = sup {p log ( + r (12.4) 
P 

For our purposes, the main value of this result is that it leads to 
cluster expansions (Section 13). The proof follows Theorem 3.4.6 of ref. 29, 
using the concavity of ~b(.) and the bound (4.4). Defining pR(() and pO(() 
in terms of Z R and Z ~ in like manner, we have 

p(() = pR(() = pO(() (12.5) 

Proof of uniqueness of the maximal p(() in (12.4) would require dif- 
ferentiability (absence of phase transition) of p((). Assuming, as seems 
likely, that this holds, we have 

p(~) = p(() log ~ + ~{p(()} 

log ( = -~b'{p(()} (12.6) 

p(() = ~p'(() 

Then using (10.28) and (10.30) gives 

P(() =/~{p(()} 
(12.7) 

log ( = log ({p(()} 

i.e., the ensembles are "equivalent". Thus ( and p(() have the statistical 
interpretations given in Section 5. In a similar fashion 

G{p(~)} -- ~ ~ p ( ( )  (12.8) 
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A sharper version of (12.5) can be obtained via a direct proof of the 
existence ofp(O as follows (though this does not establish the equivalence 
of ensembles). In place of Lemma 1, one finds, by a more detailed counting 
of edges that escape from [ - A, B + A ], 

ZO(A,B)< ~ ~ B + k - - 1  ( k + I ) [ l z ( K , ~ ) j k Z R ( A _ k , B + 2 A )  (12.10) 
k=0 k 

Multiplying through by (A and summing gives 

,ER( f ,B)<~Z~ (12.11) 

where 

~(B, A) = 2(B/t(K,~) [ 1 -- Qt(Ka)] - s  (12.12) 

Then ) , ~ 0  as B--* oo and A!/B---, oo, a much weaker condition than in 
Lemma 1. Thus ~, 3 R, and 3 0 are very close for larger B, and growth rates 
can be obtained via Z ~ and (11.1 ). 

13. C L U S T E R  E X P A N S I O N S  

A formal series or cluster expansion for P(O takes the usual form and 
leads to a series for G(p). This provides successive corrections to the 
growth rate of small-angle surfaces. Since we have an explicit expression for 
Z ~ we use (12.1) and (12.3) to get 

where 

P(O =P~ = b l (  + b:~2 + b3( 3 + "'" (13.1) 

b~ = Z~ 1, B )/B = Io(2t/L) 

b2= lim 1 [ 1 J s -  ~ B 2~ B) - ~ Z ~  B): (13.2) 

ba= lim 1[  ] " s ~ - B  Z ~ 1 7 6 1 7 6  Z~ 

and so on. Continuing formally gives 

P(O = b~ ( +  2b2( 2 + 3b3( 3 + ..- (13.3) 

whence, with (12.7), 

~(p)=p-(b , /b~)p2+(4b~_/b~-2b3/b~)p3+ ... (13.4) 

822/81/3-4-13 
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Differentiating (13.1) with respect to 1/ and denoting r/ derivatives by a 
prime, we have 

G(p)  = (gq/L)(b ' l  ~ + b~(  2 + b'3( 3 + . . .  ) = (g~l /L)(c]p  + czp  2 + c3p 3 + " ' "  ) 

where 

(13.5) 

where 

j= l  k=] 

which converges rapidly. Then an explicit expression for c3 follows from the 
identity 

d I,,(x) = 1 
-~ [ I  n + I(X) -~ I n _  l(X)] (13.11) 

For  example, if 2 r /L= 10, then c ~ / ( 2 L ) = 0 . 9 4 8 6 0 0 ,  c 2 / ( 2 L ) = - 0 . 1 4 3 2 3 4 ,  
and c 3 / ( 2 L ) =  -0.219464.  Thus, for small p, 

G(p)  = (2ig) ~a (0.9486p - 0.1432p 2 - 0.2195p 3 + . . .  ) (13.12) 

This is plotted in Fig. 8, and shows good agreement  with the simulations, 
surprisingly up to about  p = 0.8. 

We recall that  the first terms in (13.4) and (13.5) were obtained 
rigorously for the case of  two edges [see (6.15)]. Fo r  small r/L we have 
el ~ 2qL  2, c2 ~ - 2 q L  2, and c3--~ 211L2, which gives 

G ~ i L ( p - p 2 + p 3  + . . .  ) (13.13) 

c, = b'~ Ib,  = 2 L I ,  (2qL) Iq(2~IL)  

c2 = (b21bi) '  (13.6) 

C3 = (b31b~), 2 4 t - 2 ( b 2 / b l )  

Now we evaluate c 2 and c 3. F rom (11.4) and Neumann ' s  identity (6.8) we 
have 

b2 = Io(2r/L) - �89 (13,7) 

and hence 

c2= - 2 L I o 3 ( 2 r l L ) [ I o ( 2 r l  L )  I ~ ( 4 r / L ) -  Io(4r/L) I i (2r/L)]  (13.8) 

F rom (11.4), (11.12), and (6.8) we have 

b3 = ~ I 3 ( 2 r / L ) -  �89 Io(4qL) + 2Z'(2r/L) (13.9) 
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for small p. This is consistent with (7.1). Equation (13.5) suggests that 

G(p)/p--*G(1, 1) as p--*0 (13.14) 

which is a stronger version of the independent-edges result, Theorem 2. 
However, proving this would require a theory of the series expansion. 

Using (10.31), we deduce from (13.5) that 

G(p) = (grl/L)(c I + c 2 p - l  + C3p-2+ .-. ) (13.15) 

for large p. In particular, for 2r/L = 10, 

G(p)=(2ig) ~/2 (0.9486 -- 0.1432p -~ -- 0.2195p-2 + --. ) (13.16) 

This is compared with the simulations in Fig. 8. The agreement is good for 
p > 1.2 as expected. Of course, the absolute error in (13.16), being of third 
degree, is greater than that in (13.12), being of fourth degree. 

The radius of convergence ~ of the power series for G(p) cannot 
exceed 1. For, if it did, the Laurent series for G(p)-pG(1/p)=O would 
be analytic in the an, nulus I / ~ <  Ipl < ~  of the complex plane. Since 
G(p)~C. ( l+p) ,  it would theD follow that G ( p ) = 0  for all p, a contra- 
diction. 

For small qL, (7.1) gives G(p)~Li/( l+p),  with r ~ = l .  The main 
unsolved problem is to fred a tower bound on ~ in general. 

Because of  the A *-* B symmetry, the above developments and those of 
Section 12 can, just as readily, be base6 upon the isobaric partition function 

F(A ,p )=I+ e-BPZ(A,B) (13.17) 

instead of ~ ,  B). This exists for p > log Io(2~L) because Z ~< Z t. If we call 
- ( l o g  F)/A the Gibbs free energy, then the usual thermodynamic relations 
hold in We limit A -+ oo. In view of (11.1), F~ based upon Z "~ can 
be represented by an. unconstrained sum of determinants. 

'[4. S I M U L A T I O N S  

Because of the Markov property, creations occur uniformly on (3~ S~ 
and at time intervals having exponential distribution with instantaneous 
rate q = i Zt  Dr. Rather than computing the S;s, one can generate locations 
uniformly o,n. all the edges and at exponential times with mean 1/(iAL), 
and then reject creations that violate the SOS rule, so-called rejection 
sampling. 
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Ergodic theory for Markov chains implies that 

1 k 
( N )  = l im ~k ~..= (ti-- t,_ l) N(ti) (14.1) 

where the t; are the times at which kinks are lost or gained and the process 
N(t) is the total number of x-kinks at time t + 0. Then (5.1) gives G. Also 
the mean creation rate is 

i ( ~  Dr) = tlim ~ M(t)/t (14.2) 

where the process M(t) is the total number of creations up to time t. Then 
(5.3) gives R. 

In the simulations we took i = L = 1, without loss of generality, and 
g =  0.02, which implies 2t/L = 10. This places us near regime II. We also 
took A = 10 and B values 1-12 and 14, 16, 20, 25, 33, 50, and 100, leading 
to values of p in the range 0.1-10. For each value of B we simulated 105 
transitions and used (14.1) and (14.2) to compute growth rates and 
creation rates. 

Figure 8 shows G/(2ig) I/2 plotted against p and Fig. 9 shows R plotted 
against p. Both graphs are in accord with the general observations in 
previous sections, and demonstrate the pronounced effects of interaction 
between edges as density of edges increases, i.e., as the slope of the surface 
increases. 

Fig. 9. 
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The dimensionless creation rate versus angle of the surface in the model with 
i =  L = 1, g = 0.02, and A = 10, generated by simulations. 
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Example of a state generated by simulations with i = L =  1, g =  0.02, A = 10, and 
B = 20. 

Figure 10 shows a state of the process with B = 2 0  and A = 10 after 
105 transitions. The broken line is the periodic image of edge A. For 
smaller g we would see many more kinks, greater excursions by edges, and 
more frequent instances (though smaller intervals) of interactions between 
edges. 

15. D IAGONALLY SLOPING SURFACES 

Suppose that every edge has an excess of K x-kinks over y-kinks. Then 
the surface has a slope in the EW direction or, regarding A x L as the base, 
a slope of K steps in the EW direction. The appropriate modifications of 
the Markov process are fairly obvious. (16) The EW periodic boundary 
conditions have a K-step shift, so that edges join continuously to their 
periodic extensions. Here we outline the main results. 

The stationary distribution (4.1) applies on the modified state space. 
The two-edge case (Section 6) now involves the more general version of 
(6.4) from ref. 4, Chapter 3. 

Small r/L (Section 7) is replaced by r/= 0 or i = 0. Then, after time L/g, 
all y-kinks are removed from any initial state and the subsequent process 
comprises the deterministic motion of the KA x-kinks alone. Thus G = 0% 
where e = KA/LB is the number of kinks per unit area. This constrasts 
sharply with the K =  0 result (7.2) and is another instance of permanent 
steps dominating growth/~6) 

For high edge density, (5.1 I) becomes (cf. ref. 16, Theorem 5) 

G(A, 1) - (2ig)i/2 I'K/Ir (15.1) 
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For low edge density, (9.2) holds with 

Z* = VoI ~ (15.2) 

The results for the thermodynamic limit (Section 10) are unchanged, except 
that (10.31) does not apply. The base or substrate implied by Z ~ or Z R is 
now a parallellogram. 

In Lemma 2, the matrix is replaced by 

At,,, = IK + : l_:m+t_, , (2~lL ) (15.3) 

which leads to the cluster coefficients 

bl = IK(2qL)  

b,  = I ~.(2r/L) - �89 
- (15.4) 

c ~ = 2LI'K ( 2~/L)/IK (211L) 

c2 = -- 2 L I  ~ 2( 2rlL )E l x(  2rlL ) I',_x( 4qL  ) - I'K( 2rlL ) I2K(4r/L) ] 
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